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Statistically based metrics, incorporating operating costs, for gas turbine engine diag-
nostic systems are required to evaluate competing products fairly and to establish a
convincing business case. Diagnostic algorithm validation often includes engine testing
with implanted faults. The implantation rate is rarely, if ever, representative of the true
fault occurrence rate and the sample size is very small. Costs related to diagnostic
outcomes have a significant effect on the utility of a given algorithm and need to be
incorporated into the assessment. Techniques for assessing diagnostics are drawn from
the literature and modified for application to gas turbine applications. The techniques are
modified with computational experiments and the application demonstrated through ex-
amples. New techniques are compared to the traditional methods and the advantages
presented. A technique is presented to convert a confusion matrix with a non-
representative fault distribution to one representative of the expected distribution. The
small sample size associated with fault implantation studies requires a confidence inter-
val on the results to provide valid comparisons and a method for calculating confidence
intervals, including on zero entries, is presented. Receiver operating characteristic
(ROC) curves evaluate diagnostic system performance across a range of threshold set-
tings. This allows an algorithm’s ability to be assessed over a range of possible usage.
Cost curves are analogous to ROC curves but offer several advantages. The techniques
for applying cost curves to diagnostic algorithms are presented and their advantages
over ROC curves are outlined. This paper provides techniques for more informed com-
parison of diagnostic algorithms, possibly preventing incorrect assessment due to small
sample sizes. �DOI: 10.1115/1.3159384�

Keywords: turbines, diagnostics, metrics, cost curves, confusion matrices
Introduction
In the past 10 years, interest has grown in defining statistically

ased suites of metrics for gas turbine engine diagnostic systems.
s more diagnostic systems are developed, researchers require

echniques to compare their algorithm to others. Organizations
urchasing or funding research require metrics to evaluate com-
eting products on a level playing field and to establish a convinc-
ng business case. Davison and Bird �1� provided an overview of
iagnostic metrics and proposed a technique to generate confi-
ence intervals for them.

Diagnostic algorithm development is being performed by origi-
al equipment manufacturers �OEMs�, small and medium busi-
esses, research institutes, and universities. While OEMs may
ave access to large quantities of operational data, it is not always
ell correlated with the true state of the engine and access to these
ata sets by other developers can be extremely limited.

Developers often use results from computer engine models to
est their algorithms. This technique can produce a wide range and
arge quantity of data but the correlation to reality may be uncer-
ain. Currently, NASA is leading an initiative to produce a com-
uter model, which incorporates realistic fault implantation, oper-
ting condition variations, and sensor errors. This will produce
imulated operating data for a commercial aircraft engine for
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benchmarking diagnostic algorithm performance �2�. This will
provide a useful generic tool for comparing algorithms but may
not be applicable to a particular user’s operating conditions.

An alternate technique for algorithm testing uses data from im-
planted faults. While this is real engine data, it is usually acquired
in a sea level test cell and is not representative of actual operating
conditions. It also has a small sample size, due to the cost of
performing such tests, resulting in a large uncertainty, which is
often not quantified. This makes comparing algorithms difficult.
Ideally the size of the confidence interval would be used to guide
the required number of tests. However, as a minimum, the confi-
dence interval corresponding to the sample size chosen should be
presented. Failure to provide the confidence interval could result
in a superior algorithm being discarded.

The fault distribution applied can also have a significant effect
on an algorithms performance. During fault implantation studies
the implantation rate is rarely, if ever, representative of the true
fault occurrence rate. In addition, different operating environ-
ments result in different fault occurrence rates. The practical result
being that an algorithm may have greater success in different op-
erating environments or on engines that generate different fault
distributions. Modifying the confusion matrix to represent the ex-
pected fault distribution allows a more realistic assessment of the
diagnostic algorithm under the expected operating conditions.

Similarly, the cost of fault occurrence and misdiagnosis impacts
the algorithms value. A misdiagnosis with little effect on the bot-
tom line will be a low priority for the end user but a traditional
confusion matrix does not account for this factor. Cost matrices

allow algorithms to be compared based on such costs. They are
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Downlo
asily applied to traditional confusion matrices allowing evalua-
ion of a particular algorithm across a range of cost scenarios.

Receiver operating characteristic �ROC� curves suffer from
any of the same problems as the traditional confusion matrix.
his is not surprising as ROC curves are based on the decision
atrix, which is a simple two case version of the confusion ma-

rix. The ROC curve presents the decision matrix across a range of
ettings. Further details on ROC curves can be found throughout
he literature, for example, DePold et al. �3� and Davison and Bird
1�, who examined them with relation to engine health, or Webb
nd Ting �4�, who provided a broader discussion.

Cost curves have been presented by the artificial intelligence
ommunity as an improved technique for assessing algorithm per-
ormance across a range of settings. Cost curves present ROC data
ut over a range of fault distributions and costs �5,6�. This allows
n algorithm to be assessed for applicability to a particular cost or
ault distribution.

In addition, cost curves provide a simple visual comparison for
wo competing algorithms and to the simple classifiers �all fault or
ll no fault�. Cost curves allow simple averaging techniques to be
pplied to improve data quality and confidence intervals to be
enerated for comparison purposes.

Cost and Confusion Matrices
The use of confusion matrices to demonstrate the ability of a

iagnostic algorithm to differentiate faults is widespread and well
nderstood. Table 1 presents a sample confusion matrix. The di-
gonal �in gray� represents faults correctly identified and the off
iagonals represent faults misclassified. The no fault case can ei-
her be retained or removed from the matrix. More details on
arieties of confusion matrices and metrics available to summa-
ize them are given by Davison and Bird �1�.

2.1 Correcting for Fault Distribution. Often, during devel-
pment, testing, and evaluation, fault distributions are assumed
hat are unrepresentative of what is experienced in service. This

ay be due to lack of knowledge of the true conditions or limi-
ations in testing. Even fault distributions obtained from in-service
ata will change with the operating environment and duty cycle of
he engines.

To correct for changes in fault distributions the original distri-
ution must first be eliminated from the confusion matrix. This is
chieved by dividing each element by the sum of the entries in the
olumn containing it, as given by Eq. �1�. The new distribution is
hen applied by multiplying each column by the corresponding
lement in the fault probability vector as per Eq. �2�. The fault
robability vector contains the proportion of faults in element j
orresponding to the column j in the confusion matrix. The sum
f the elements in the fault probability vector is 1.

qij =
pij

�
k=1

F

pkj

�1�

p� = qijf j �2�

Table 1 Multiple fault confusion matrix

True state

No fault F1 F2 F3 F4

No fault A B C D E
redicted state F1 F G H I J

F2 K L M N O
F3 P Q R S T
F4 U V W X Y
ij
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Equation �2� produces a new confusion matrix with a distribu-
tion representative of the one expected in service. Unfortunately,
the algorithm validation with actual performance data is often
very limited due to the expense of operating and degrading an
engine. Small sample sizes from fault implantation studies can
result in large confidence intervals on the results.

Bootstrap techniques can be applied to obtain the confidence
intervals on the confusion matrices and their corresponding met-
rics. This can be used to guide the number of samples required to
obtain an acceptable confidence interval. Details on applying
bootstrap techniques to diagnostic metrics can be found in Davi-
son and Bird �1� and the general application and theory in Davi-
son and Hinkley �7�.

2.2 Cost Matrix. The confusion matrix adequately describes
the ability of the algorithm to discriminate faults and, if it has
been adjusted for the expected fault distribution, should be repre-
sentative of its performance in service. However, the confusion
matrix does not allow for the costs involved with each element of
the confusion matrix. The cost matrix is identical in size to the
confusion matrix with each corresponding element representing
the cost of that outcome in the confusion matrix. If a profit is
generated by the outcome the value is negative. The utility matrix
is equivalent to the cost matrix but provides the benefit or profit of
each element in the confusion matrix. It is simply the negative of
the cost matrix. The cost matrix is more appropriate for diagnos-
tics analysis as no profit is expected and the user’s objective is to
minimize the expense incurred.

The cost of each diagnostic outcome will depend on both the
application and user. Orsagh et al. �8� and Osborn and Yu �9�
provided some of the costs associated with gas turbine diagnostic
systems and their misdiagnosis. In general, if the cost of the di-
agnostic system is considered a constant and not incorporated as
an outcome of the diagnosis then a correct diagnosis of no fault
will cost nothing as the aircraft continues to function as planned
and no action is required. The correct diagnosis of a fault incurs
the cost of both investigation and repair. The incorrect diagnosis
of a fault incurs the cost of investigation to determine that no fault
is occurring.

The incorrect diagnosis of no fault has potentially the highest
cost as it could include unscheduled down time and secondary
damage to the engine. The incorrect isolation of the fault type will
incur additional investigation costs. The value of a diagnostic al-
gorithm is not truly known without incorporating these costs into
the metrics.

The mean cost matrix combines the cost matrix and confusion
matrix, essentially resulting in a confusion matrix weighted by the
costs. The mean cost matrix is produced by performing an element
wise multiplication of the cost matrix and the confusion matrix as
per Eq. �3�.

D = C · P �3�
As with the confusion matrix, the resulting mean cost matrices

can be difficult to compare as they contain many values. The
obvious solution is to sum the mean cost matrix as per Eq. �4�.
This will yield the mean cost per diagnosis, under the fault distri-
bution assumed for the generation of the confusion matrix. A
change in the fault distribution can have a very significant effect
on the mean total cost. The value has little meaning across differ-
ent applications and users due to the variations in fault distribution
and costs.

Mean total cost = �
i=1

F

�
j=1

F

dij �4�

The mean subjective cost �MSC� score is proposed as an alter-
native to the simple mean total cost. It was developed by Mc-
Donald �10� and is normalized such that it returns a 0 when all
faults are correctly classified and 1 when the faults are evenly

distributed among all possible outcomes. It is calculated by Eq.
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5�. The normalized cost matrix �V� is found by rescaling the cost
atrix as per Eq. �6�. The beta coefficients in Eq. �6� are obtained

y simultaneously solving Eqs. �7� and �8�, which satisfy the lim-
ts 0 and 1 as specified above.

MSC = 1 − �
i=1

F

�
j=1

F

pijvij �5�

V = �2 − �1C �6�

1 = �2 − �1��
i=1

F

ficii� �7�

0 = �2 − �1� 1

F�
i=1

F

fi�
j=1

F

cji� �8�

If the costs are assumed to be equal for all correct diagnoses,
nd equal, but greater than the correct cost for misdiagnoses the
SC reduces to a metric for the confusion matrix alone, given by

q. �9�. Other standard confusion matrix metrics, such as the �
oefficient, could also be applied to the mean cost matrix to obtain
metric for the cost.

MSC =
F

F − 1�
i=1

F

�
j=1,j�i

F

pij �9�

While the mean total cost has the most direct relation to the
n-service cost, and is useful when examining an algorithm for a
articular application, the MSC is applicable across applications
ith the same relative cost differentials but not necessarily the

ame absolute costs. The reporting of MSC and the normalized
ost matrix also allows the merit of an algorithm to be demon-
trated without revealing true operating costs, much as a normal-
zed performance map provides compressor operating trends with-
ut revealing the actual performance parameters.

2.3 Laplace Correction for Missing Data. Test data sets do
ot usually contain a complete representation of the confusion
atrix. The low probability of the off diagonal elements occurring

equires a very large data set to accurately capture the true distri-
ution of the complete population. Applying a Laplace correction
o the mean cost matrix compensates for the missing data and
mproves the confidence interval on the resulting cost value �11�.

In addition to improving the confidence interval on the average
etric, we apply the Laplace correction to obtain improved con-
dence intervals on the entries in the confusion matrix, including
ero value entries that otherwise would not have a confidence
nterval. Many zero values occur during an algorithm test program
ince enough faults cannot be implanted to capture all the possible
isdiagnoses. It is impossible to know which, if any of the zero

ntries, would have a nonzero value in the complete population. A
onfidence interval can be assigned, however, to provide an indi-
ation of the variability.

The Laplace corrected matrix is produced with Eq. �10�. Prac-
ically, this has the effect of adding � events to every cell in the
onfusion matrix. Whereas the usual assumption is an initial zero
istribution in the confusion matrix, the Laplace correction as-
umes a uniform nonzero distribution �equal to the � value in Eq.
10��. Increasing the value in the confusion matrix element de-
reases the effect of the Laplace correction. Increasing sample
ize also decreases the effect of the correction.

Margineantu and Dietterich �11� showed that when calculating
he overall cost a Laplace correction factor ��� between 0 and 0.5
mproves the confidence interval for the bootstrap technique,
ringing the confidence closer to the stated value. They did not,
owever, examine the confidence intervals for individual entries

n the confusion matrix.

ournal of Engineering for Gas Turbines and Power
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L =
Pn + �

n + F2�
�10�

Our work shows that the Laplace correction also improves the
confidence intervals on the individual entries in the confusion ma-
trix. Starting with the confusion matrix presented in Table 2,
which contains a range of proportions representing the true occur-
rence rates in a population, new matrices with sample sizes of 20,
40, 80, 200, and 1000 were produced. 1000 matrices were gener-
ated for each sample size and the confidence intervals generated.
The fraction of the confidence intervals containing the value from
the original matrix divided by the confidence level should equal
one. If it is less than one the confidence interval is too small and
greater than one it is to large.

Figure 1 plots the fraction of confidence intervals that contain
the true value across a range of � values for a sample size of 20.
The confidence intervals, for all but the 0.1 proportion, are far too
small without the Laplace correction. Despite starting at different
fractions the small proportions all reach the true confidence level
�y-axis equals 1� at nearly the same Laplace correction of 0.035.
After this point the fraction quickly increases to a value of 1.05,
where the confidence interval always contains the true value. Fig-
ure 2 is a similar plot for a sample size of 200. Increasing the
sample size by a factor of 10 has shifted the curves up. The 0.01
proportion curve matches the 0.1 curve in Fig. 1, the 0.001
matches the 0.01 curve, and so on. The curves, however, still
reach one at nearly the same Laplace correction value.

The optimal Laplace correction changes with confidence inter-
val, however. Figure 2 includes a curve for the 90% confidence
level. Although it begins at the same level as the corresponding
95% confidence curve it does not begin to climb until much later.
The optimal � value at the 90% level is 0.063 almost double that
required at the 95% confidence level. Further work is required to
fully define the optimal Laplace correction values at various
sample sizes, expected values and confidence levels.

2.4 Example. To demonstrate the utility of these functions an
example case will be presented. The data are entirely notional but
labels relevant to a gas turbine diagnostic system have been at-
tached. The full data set consisted of 440 operating points where a

Table 2 Laplace test confusion matrix

A B C D

a 0.5 0.0002 0.001 0.01
b 0.05 0.2 0.0001 0.001
c 0.005 0.02 0.1 0.0002
d 0.0005 0.002 0.01 0.1

Fig. 1 Accuracy of 95% confidence intervals with sample size

of 20
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ault occurred: bleed valve fault �FB�—238 occurrences, compres-
or fault �FC�—50 occurrences, low pressure turbine fault
FL�—96 occurrences, and high pressure turbine fault �FH�—56
ccurrences.

The sample data sets, which might be generated from a fault
mplantation study, were simulated based on the full data set.
qual numbers of each fault were implanted, producing an even

ault distribution. The algorithm was assumed to behave the same
n the test and service environments and, therefore, the fault diag-
oses were randomly selected from the set of diagnoses for the
orresponding fault in the full operating data set. Sample sizes of
, 10, and 20 for each fault were generated. The larger samples
ncluded the data from the smaller samples, as if the larger data set
as being built on the smaller, as would be expected in an actual

est program.
Increasing the number of implanted faults decreases the confi-

ence interval on the resulting metrics. While not surprising, the
onfidence intervals for test data sets are often not presented. The
ethod of applying the bootstrap is given by Davison and Bird

1�. For this example 1000 bootstrap samples were taken and a
urther 200 bootstrap samples per sample taken to obtain the
ariance.

The bootstrap technique allows a confidence interval to be pro-
uced. Alternately, it can be used to determine the number of fault
mplantations required to obtain the desired confidence interval.
lthough cost is often the driving force behind the study size, this

llows the cost benefit of increasing the sample size to be exam-
ned, and could even result in a decision to reduce the sample size.

Figure 3 demonstrates the change in confidence interval and the
alue of the MSC as the number of implanted faults is increased.
quation �9� was used to calculate the MSC. The results from the
aplace corrected data set are also shown. A lambda value of 0.25
as chosen because Margineantu and Dietterich �11� found this

ame close to achieving a true 95% confidence interval and erred
y producing a larger confidence interval than required, resulting
n a conservative result. For comparison the result from the origi-
al data set, adjusted to match the implanted fault distribution, is
lso presented. Variation can be very significant for small numbers
f implanted faults since the chance of having a sample from all
he possible off diagonal combinations is low.

The confidence interval from the Laplace corrected matrix al-
ays contains the MSC for the full data set. The values for the
ncorrected data are not as well behaved and at the five sample
evels, the confidence interval does not intersect the confidence
nterval for the full data set. Similar patterns were found for the �
oefficient and percent correct classification �PCC�.

Figure 4 compares the size of the confidence interval for each
ample size, both for the evenly distributed fault implantation and

ig. 2 Accuracy of 95% confidence intervals with sample size
f 200
ith the fault implantation rates adjusted to represent the fault
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distribution in the full data set. The Laplace corrected confidence
intervals show a consistent decrease in range with sample size, as
we would expect.

The uncorrected data display more erratic behavior. The confi-
dence interval initially increases in size because the increase in
samples from five to ten introduces more variability into the data
set than is compensated for by the larger sample size. The increase
demonstrates that the confidence interval at the five sample size is
too small. The introduction of the Laplace correction establishes a
more representative variability in the very small sample sizes. As
the sample size increases, the influence of the correction decreases
and the sizes of confidence intervals converge.

This demonstrates the caution required when dealing with small
sample sizes. For the bootstrap technique to accurately predict the
variance and confidence interval the sample must be representa-
tive of the population. If the off diagonal elements in the confu-
sion matrix are small then the chances of all possibilities being
represented in the implanted fault set are low. This reduces the
overall variability in the data set and consequently the confidence
interval.

Comparing Tables 3–5, further demonstrates the small sample
size problem. Tables 3 and 4 are the confusion matrices for a data
set with ten of each type of fault implanted. Table 5 is the confu-
sion matrix for the full data set, adjusted for even fault distribu-
tion. Using the element �1,1� as an example the adjustment is
made as follows:

Fig. 3 Confidence intervals on MSC for Laplace corrected „�
=0.25… and original confusion matrices produced with increas-
ing number of implanted faults

Fig. 4 MSC confidence interval for Laplace corrected „�
=0.25… and uncorrected confusion matrices normalized by con-

fidence interval for the full data set

Transactions of the ASME
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1. As per Eq. �1� calculate q11

q11 =
p11

�
k=1

F

pk1

=
0.477

0.477 + 0.041 + 0 + 0.023
= 0.882

2. As per Eq. �2� calculate the adjusted value. For even fault
distribution the new distribution is f =1 /F.

p11� = q11f1 =
q11

F
=

0.882

4
= 0.221

able 3 Confusion matrix generated with ten faults implanted
or each fault type including 95% confidence interval

FB FC FL FH Total

B 0.200
0.350 0 NA 0 NA 0.025

0.075
0.225

0.100 0.000

C 0.050
0.125

0.250
0.400

0 NA 0 NA 0.300
0.000 0.125

L 0 NA 0 NA 0.225
0.350

0.025
0.075

0.250
0.100 0.000

H 0 NA 0 NA 0.025
0.075

0.200
0.325

0.225
0.000 0.100

otal 0.250 0.250 0.250 0.250 0.875

able 4 Confusion matrix generated with ten faults implanted
or each fault type with Laplace corrected 95% confidence in-
erval „�=0.035…

FB FC FL FH

B 0.200
0.325 0 0.025

0
0.025

0.025
0.075

0.100 0.000 0.000 0.000

C 0.050
0.125

0.250
0.400

0
0.025 0 0.025

0.000 0.125 0.000 0.000

L 0
0.025 0 0.025

0.225
0.350

0.025
0.075

0.000 0.000 0.100 0.000

H 0 0.025
0

0.025
0.025

0.075
0.200

0.325
0.000 0.000 0.000 0.075

able 5 Confusion matrix generated from full data set ad-
usted for even fault distribution including Laplace corrected
5% confidence interval „�=0.035…

FB FC FL FH Total

B 0.221
0.264 0.055 0.077

0
0.002

0.013
0.025

0.289
0.186 0.034 0.000 0.005

C 0.019
0.032

0.190
0.227

0
0.002 0.013 0.025

0.222
0.007 0.155 0.000 0.005

L 0
0.002 0.005 0.014

0.240
0.282

0.054
0.075

0.298
0.000 0.000 0.202 0.032

H 0.011 0.020
0

0.002
0.010

0.020
0.170

0.209
0.191

0.002 0.000 0.002 0.134

otal 0.250 0.250 0.250 0.250 0.820
ournal of Engineering for Gas Turbines and Power
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The bold zero values in Table 3 and 4 correspond to the small,
but nonzero, bold values in Table 5. The lack of an example in the
implanted data set results in no variance or confidence interval
being determined for that value. The bootstrap technique assumes
it is always zero, which the full data set shows is incorrect.

Applying a Laplace correction on the confusion matrix resulted
in the intervals on the zero values given in Table 4. A � value of
0.035 was chosen because our tests showed this produced near
95% confidence intervals across a range of proportions. The opti-
mal correction factor is different when calculating confidence in-
tervals on individual confusion matrix entries and when looking at
aggregate metrics for the entire matrix. The Laplace correction is
applied to the matrix and the bootstrap samples are then drawn
from the proportions in the corrected matrix. Using the element
�1,2�, a zero value in Table 3 as an example the Laplace correction
is made by applying Eq. �10�. The zero value is now a small value
that can be sampled. This increase is compensated for by a reduc-
tion in the larger values. For example the element �1,1� goes from
0.200 to 0.198.

l12 =
p12n + �

n + F2�
=

0�40� + 0.035

40 + 42�0.035�
= 0.0009

Presenting the confusion matrix and the corresponding sum-
mary metrics for even fault distribution allows easy discrimination
of the algorithm’s ability to identify a particular fault. Normaliz-
ing each column by the fault frequency generates a matrix with a
diagonal of ones for perfect fault discrimination. However, this
does not convey all the important information. The actual fault
proportion is a critical parameter in the overall effectiveness of the
algorithm. As an extreme example, 100% diagnosis of a fault,
which never occurs is no use.

The effect of the fault distribution on the resulting summary
metrics is demonstrated in Table 6. The result for the Laplace
corrected matrix is given in brackets and differs only slightly from
the uncorrected value, as the sample size is large enough to reduce
the significance of the correction. The MSC was calculated with
Eq. �5�. The calculation of PCC, �, and confidence of rejection
with a detailed example are provided by Davison and Bird �1�.
With a high level of confidence the results for the even fault
distribution present an inferior picture of the algorithms perfor-
mance compared with the results based on the actual fault
distribution.

Similarly, the cost of diagnosis or misdiagnosis can strongly
affect the overall value of an algorithm to the operator. Using the
cost matrix presented in Table 7, the MSC was recalculated and is
shown under “adjusted for cost” in Table 6. The addition of the
cost data significantly reduced the MSC once again. The evenly
distributed data dropped from 0.24 to 0.18 while the distributed
data showed a smaller change going from 0.19 to 0.16. This pro-
vides a 21% confidence level that the MSC has improved.

Comparing the original evenly distributed data without cost to
the actual fault distribution with cost, we are almost 99% confi-
dent that the MSC has improved. If only the evenly distributed
data had been examined, a superior algorithm for the desired ap-
plication could be rejected.

In this example, the cost has a slightly larger effect than the
fault distribution on the MSC. Based on this limited sample, ap-
plying the cost matrix will improve the result even if the fault
distribution is not representative of operational reality. We can
also compare the mean total cost. For the evenly distributed case,
this results in a cost of 18.9 and of 13.2 for the actual fault dis-
tribution �these correspond to the MSCs of 0.18 and 0.16�.

3 Cost Curves
ROC curves are used to evaluate diagnostic system perfor-

mance across a range of threshold settings. This allows the algo-
rithm’s performance to be assessed across a range of possible

usage. Cost curves were presented in the artificial intelligence
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ommunity as an alternative to ROC curves �5,6�. Cost curves
ffer several advantages over ROC curves, which are listed as
ollows.

�1� Misclassification costs and fault probabilities can be incor-
porated into the performance assessment.

�2� For given costs and probabilities, an algorithm can be
readily compared with a trivial classifier.

�3� The performance of two algorithms can easily be com-
pared.

�4� An average value for several evaluations of an algorithm
can be found.

�5� Confidence intervals can be readily generated.

The ROC curve is based on the decision matrix, for example
able 8. The rates are found by dividing each element in a column
y the sum of the column. This removes the fault distribution
rom the analysis. The false positive �FP� rate is then plotted on
he x-axis �C / �A+C� in Table 8� versus the true positive �TP� rate
n the y-axis �D / �D+B�� across a range of threshold settings in
he algorithm under evaluation.

The cost curve replaces each point on the ROC curve with a
ine spanning the proportion of fault occurrence from 0 to 1. Us-
ng the element labels in Table 8 for both the decision matrix and
he associated cost matrix the x-axis for the cost curve is the

Table 6 MSC, PCC, and � with 95% confidenc
distribution without cost, being greater than
rection applied „�=0.25….

No cost adjustment

Even dist. Actual d

MSC

Value 0.24 0.19
Lower 0.19 �0.20� 0.15 �0.
Upper 0.29 �0.29� 0.23 �0.
Conf. 95% �94%�

PCC

Value 0.82 0.86
Lower 0.79 �0.78� 0.83 �0.
Upper 0.86 �0.85� 0.89 �0.
Conf. 5% �6%�

�

Value 0.76 0.78
Lower 0.71 �0.70� 0.73 �0.
Upper 0.81 �0.80� 0.83 �0.
Conf. 27% �29%�

Table 7 Cost matrix

FB FC FL FH

B 3 18 25 33

C 11 15 32 38

L 13 27 22 39

H 17 34 41 30

Table 8 Decision matrix

True state

No fault Fault

redicted
tate

No fault A B
Fault C D

+D=proportion of cases diagnosed correctly, A=true negative proportion; B
false negative proportion, C=false positive proportion, and D=true positive pro-

ortion
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probability of a fault occurring, times cost and normalized, re-
ferred to as the probability cost function �PCF� and defined as
follows:

PCF =
p+CB

p+CB + �1 − p+�CC

p+ = proportion of positive�fault�cases assigned independent of

actual proportion from decision matrix �11�

The y-axis is the normalized expected cost �NEC� given by

NEC =

PB

PB + PD
p+CB +

PC

PA + PC
�1 − p+�CC

p+CB + �1 − p+�CC

=
�1 − TP�p+CB + FP�1 − p+�CC

p+CB + �1 − p+�CC
�12�

For each point on the ROC curve two points on the line can be
obtained by setting p+ to 0 and 1. If the misdiagnosis costs are
equal but greater than the equal diagnosis costs �logical statement
13 is satisfied�, then the plot is simplified. Equation �11� becomes
Eq. �14�, which is just the assigned probability of a fault occur-
ring, and Eq. �12� becomes Eq. �15�, which is the error rate.

If �CA = CD� � �CB = CC� � �CB � CA� �13�

then

PCF = p+ �14�

NEC =
PB

PB + PD
p+ +

PC

PA + PC
�1 − p+� = �1 − TP�p+ + FP�1 − p+�

�15�

Figure 5 shows a sample ROC curve. The points labeled A and
F represent the extreme, simple classifiers. Point A assigns every-
thing to no fault and F to fault. These are converted to cost curve
lines A and F in Figs. 6 and 7. Anything under the triangle formed
by lines A and F is superior to using the simple classifiers; any-
thing that falls above lines is inferior. Any classifier resulting in a
NEC above 0.5 will be improved by just swapping the labels. In
other words, any case classified as a fault should be classified as
no fault and vice versa.

Line D in Fig. 6 corresponds to point D in Fig. 5 and we can
immediately see the range of PCF for which the algorithm, with

tervals and confidence for rejection of actual
ue. Results in parenthesis have Laplace cor-

Adjusted for cost

Even dist. Actual dist.

0.18 0.16
0.14 �0.15� 0.12 �0.12�
0.23 �0.23� 0.21 �0.22�
45% �44%� 21% �16%�

Confidence of rejection that even dist.,
no cost MSC�Actual distribution,

cost adjusted MSC

1.3% �1.2%�
e in
val

ist.

15�
24�

82�
88�

73�
82�
the appropriate threshold settings to achieve point D, outperforms

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
a
t

i
1
f
c
t
a
t

F
s

J

Downlo
he simple classifiers. The objective on the cost curve plot is to
pproach an expected cost of 0, which equates to always getting
he answer correct.

Figure 7 plots the cost curves for both the algorithms presented
n Fig. 5. The lines corresponding to the points on the “algorithm
” ROC curve are presented and labeled. This cost curve was
ormed by tracing the lines with the smallest NEC. Forming the
ost curve in this way produces the best case curve. Unfortunately,
o achieve this curve in reality requires the proportion of faults
nd costs to be known prior to operation, so that the correct
hresholds can be set. However, this plot provides guidance in

Fig. 5 Sample ROC curve

ig. 6 Sample cost curve for single threshold setting showing
imple classifiers and 90% confidence intervals
Fig. 7 Cost curves for algorithms 1 and 2
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determining the optimal threshold settings to maximize perfor-
mance across an expected range of fault occurrence. It also allows
poor settings to be isolated. Line B, for example, is always infe-
rior to other settings as no segment of it forms part of the optimal
cost curve.

A cost curve can be generated from a single decision matrix.
This produces a single line and its performance across the range
of costs can be assessed. The line can be compared with the lines
produced for the decision matrices from other algorithms, or ones
using different thresholds, to determine which is optimal for the
expected cost for a particular application. The cost curve imme-
diately shows under which costs each algorithm is superior and
the cost at which it is beneficial to switch algorithms.

3.1 Summary of Cost Curve Production. To produce a cost
curve for a single decision matrix, the following has to be done.

1. Set p+=0 resulting in a PCF=0 �Eq. �11�� and a NEC
=FP �Eq. �12��.

2. Set p+=1 resulting in a PCF=1 �Eq. �11�� and an NEC=1
−TP �Eq. �12��.

3. Connect the two points produced above.

The steps above can be repeated for each threshold setting. The
best performance can be defined by tracing the line segments clos-
est to NEC=0. For a given PCF the line with the lowest NEC will
represent the optimal combination of algorithm and threshold set-
tings.

3.2 Averaging and Confidence Intervals. It is important to
be able to use statistical techniques to improve the quality of data
obtained either in service or during development. Perhaps the
most basic technique is averaging. However, there is no agree-
ment on the optimal technique for averaging ROC curves.

The cost curve can be averaged by taking the mean NEC for
each PCF value. The average cost curve is then the average NEC,
assuming that the optimal classifier settings were used for the
given PCF �6�. Once the average cost curve has been generated,
Eqs. �11� and �12� can be inverted to find the true and false posi-
tive rates and produce an average ROC curve.

An analytical technique was presented for generating a confi-
dence interval at any point on the cost curve �12�. Equation �16�
provides the variance. This assumes that the sample represents the
fault distribution in the population and that the distribution of the
diagnosis is Gaussian. Once the variance is known a confidence
interval on the NEC can be found for any PCF value with Eq.
�17�.

s2 = PCF2�1 − TP�TP + �PCF − 1�2FP�1 − FP� �16�

U = NEC +
sz�/2

�n
�17�

L = NEC −
sz�/2

�n

Applied to a single cost line, the result can be seen in Fig. 6,
labeled as the analytical upper and lower confidence intervals.
Alternately, a bootstrap technique can be applied. The decision
matrix is sampled the required number of times to produce a set of
cost lines. Stratified sampling was performed forcing each sample
to have the same fault distribution as the original. This assumes
that the sample represents the fault distribution in the population
as with Eq. �16�. At each point along the PCF axis, the upper and
lower confidence interval cost lines are chosen as per Eq. �18�.
nlower and nupper are the position of the line in the set of bootstrap
sampled lines, ordered from lowest to highest NEC at the particu-
lar PCF.
nlower = n��/2�

APRIL 2010, Vol. 132 / 041604-7

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
f
t
m
s

l
c
i
i
o
�
t

g
c
n
m
h
i

e
w
d
i
c
p
F
i
fi
R

4

t
T
o

u
e
c

F
fi

0

Downlo
nupper = n�1 − �/2�

n = number of bootstrap samples �18�
The bootstrap confidence interval is also shown in Fig. 6. As is

ypical in gas turbine diagnostics, the sample set has relatively
ew positive examples �10%� resulting in a larger confidence in-
erval as PCF approaches 1 and the positive examples form the
ajority of the available data. The analytical technique was less

uccessful at portraying this trend.
At low PCF values, the analytical and bootstrap are very simi-

ar since nearly all the samples are contributing to the NEC cal-
ulation. At higher PCF values, the number of samples contribut-
ng to the NEC calculation decreases and the bootstrap confidence
nterval spreads out to reflect this. If the decision matrix is based
n a sample set with equal numbers of fault and no fault cases
even distribution�, the confidence interval generated is very close
o the analytical technique as shown in Fig. 6.

If the bootstrap technique is applied to all the cost curve lines
enerating the optimal cost curve, an overall confidence interval
an be generated. The result is shown in Fig. 8. We can now see
ot only which algorithm is superior but have some idea of how
uch better it is. The effect of not using stratified sampling and

ence not forcing the same fault distribution each time was exam-
ned and found to be insignificant with these data sets.

The analytical version of the confidence interval was also gen-
rated. This is a relatively simple process. The confidence interval
as calculated at the intersection of the cost lines. As the variance
epends on the true and false positive proportions the confidence
ntervals will be different for each line. We chose to use the largest
onfidence interval at each intersection and join the resulting
oints with straight lines. The results of the process are shown in
ig. 8 for algorithm 1. As with the single cost line the confidence

nterval is underestimated at higher PCF values. Finally the con-
dence interval on the cost curves can be converted back to an
OC curve to produce a corresponding confidence interval.

Conclusions
Proper assessment of diagnostic algorithms requires incorpora-

ion of real world fault distributions and costs into the test data.
echniques to do this have been presented and their utility dem-
nstrated.

Cost curves were explained and contrasted to the commonly
sed ROC curves. Cost curves have the advantage of providing an
asy comparison between algorithms across a range of fault oc-

ig. 8 Cost curves showing bootstrap and analytical 90% con-
dence intervals for original sample size of 1000
urrences and costs.
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Further work is required in determining the optimal Laplace
correction for individual confusion matrix elements to obtain the
desired confidence interval. The correction varies with confidence
level and this needs to be examined.

Nomenclature
C � cost matrix
D � mean cost matrix
F � fault probability vector
F � number of fault types
L � Laplace corrected confusion matrix
P � confusion matrix as proportion of total

diagnosis
Q � confusion matrix normalized by fault

proportion
U � upper limit
V � normalized cost matrix
cij � element in cost matrix
dij � element in mean cost matrix
f i � element in fault probability vector
lij � element in Laplace corrected confusion matrix
s � sample standard deviation
n � number of samples

pij � element in confusion matrix as proportion of
total diagnosis

p+ � proportion of fault cases
qij � element in confusion matrix normalized by

fault proportion
vij � element in normalized cost matrix

z � cumulative standard normal distribution
� � significance level of the test �1-confidence/100�
� � constant in calculation of normalized cost

matrix
� � Laplace corrector

Operators
· � element by element matrix multiplication
� � Boolean multiplication
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